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Density Matrix Theory for the BDS-Hamiltonian
Dusan Popov
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In the present paper, we have extended the usual uncertainty relations, as well as the
entropic uncertainty relations to the mixed states, particularly to the thermal states,
using the density matrix formalism. As quantum model we have choosen the quantum
mechanical ideal gas with the harmonic oscillator-like Hamiltortignintroduced by
Beckers, Debergh and Szafraniec, generically named BDS-Hamiltonian.

1. INTRODUCTION

Although much has been written about the harmonic oscillator coherent states,
beginning from the fundamental papers of Glauber (1963), Klauder (1963), and
Stoler (1970) and culminating by the well-known works about the applications of
the coherent states (see, e.g., Klauder and Skagerstam, 1985; Perelomov, 1986;
Zhanget al,, 1990), the interests for the coherent and, also, for the squeezed states
actually remain.

Recently, Beckerst al. (1998) have proposed a new set of squeezed states
where a new bosonic creation operatgr is defined, which depends on a real
continuos parametey, in the following way:

af =at +al, (1)
wherea™ is the usual bosonic creation operator, which is Hermitic conjugate of

the annihilation operata. With these operators,’, at, anda, it can be proved
that the corresponding Heisenberg algebra is

[a, & ] =[a a*] =1I. )

Then, the following new operator can be constructed as the analogue of a
Hamiltonian operator (Beckert al., 1998):

hw

h
> [a.af], = —w[a, a], + xhwa=HO® + rhea. ©)

H, = >
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HereH @ is the Hamiltonian of the usual one-dimensional harmonic oscillator
(HO-1D):

h%)[a, at], = hw<a+a+ %) (4)

By using the well-known relations of the bosonic annihilation and creation
operators (Messiah, 1969):

the operatoH; can be written with respect to the varialdgas follows:

1h? 92 1 / /—mw
H,(X) = EE%-F Mw?x? +—h 3X hw - X. (7)

Moreover, by using the weII—known relations

HO —

0] ad
5 =-h» :_.h_, :.h_, 8
(X, p] =i p=-ih~ x=ihzs (8)
the same operator can be rewritten with respect to the varglas follows:
1 2 11 A d
H = —Zh’me’— + == —ihwvmho—
»(P) > Mw 8p2+2mp +ﬁ| wv/'m wap
A 1
—ihw,/ —p. 9
+ﬁl ) mhwp 9)

Notice that, in both the representations (the posifionand the momentum
{p}), the operatoH, has the same mathematical expression:

2 A
T2t N R

We refer in this paper thkdependent operatdt, as theBDS-Hamiltonian
and the Hamiltonian of thbarmonici-oscillatorasH O(A).

The variables and the coefficienta; can be carried out from Table I.

The aim of this paper is to find the explicit form of the density matrix that
correspond to the BDS-Hamiltonian. After that, we intend to use this density
matrix to calculate some thermal moments, the uncertainty product and the entropic
uncertainty relations.

By writing the BDS-Hamiltonian as given in Eqg. (10), we can solve this
problem by finding the density matrix in both representations in a common manner.

1
2E+

H.(§) = (10)
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Table I.
&

gj X p

h? h2w?
ar ™ mn©w
ap maw? i
as he,/ - i hovmho

m H 1

ay how, / 5 Iha)m
1ql 1 1

2. DENSITY MATRIX FOR THE HO(\)

Let us consider a quantum systemMbfdentical noninteracting harmonic
oscillators, that isH O(1), each with the BDS-HamiltoniaH,,, in thermodynam-
ical equilibrium with the reservoir (thermostat) at the temperaluee (ks8) 2,
wherekg is the Boltzmann constant. This quantum system fullfil the conditions of
the quantum canonical distribution. The basic function for the examination of the
physical and chemical properties of such systems is the canonical density matrix.
In the representation of the varialfigthe density matriy; (¢, £; B) is defined as

pa(E. £ B) =Y e PEw, (€)W, (E), (12)

whereuv is the vibrational quantum number add(¢) andE, are the eigenfunc-
tions and the eigenvalues, respectively, of the HamiltortignIn the position
representatiofix}, these expressions were carried out as (Beakieat, 1998)

(m)l/z 1/2 = N
vt =[] e ([T 2)
2 [zvv!Lgo)(_kz)] Rt 5 (12)

E, = hw(v + %) (13)

In comparison with the ordinary harmonic oscillator (HO), th® (1) has the
same eigenvalues, but the corresponding eigenfunctions are different: It appears
as Hermite polynomials with the displaced argument and, more so as generalized
Laguerre polynomials in the denominator of the normalization constant. As a
conseqguence, the use of Eq. (12) in the definition (11) for building the density
matrix is relatively difficult.

In order to avoid this difficulty, we propose another way to find the density
matrix. Namely, it is well known that the canonical density matrix must satisfy the
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Bloch equation (Feynman, 1972):

a / /
with the bounded condition
Jlim o £ ) = o ). (15)
For the BDS-HamiltoniarH, , the Bloch equation is
6. )= (~Gany + deaet e+ )
aﬁp)\ ’ 1 - 2 ag2 2 \/— 3 \/z
X pi(&.§'; B). (16)
This equation can be simplified by performing the following change of variables:
f = BJVa1a, a7)
ap A
= 9=+ —|q|. 18
n=.1 alé ﬁIQI (18)
Therfore, Eq. (16) becomes
3 192 1, x 8 A%,
- =|-=—+= —|g— - — ).
o . n'; ) ( 232+2 ﬁIQIan 4IOI|)m(n,n, )

(19)
In Egs. (18) and (19), we have introduced the notation

a Ja a3 ,/a
{2 = 242 20
Jaadp | ag a '\ ay ( )

Let us try to solve this differential equation with partial derivatives by using
Feynman’s method for the Bloch equation of the usual HO (Feynman, 1972), that
is, by requiring the solution of the following kind:

pi(n, ' £) = expl=A(f)n? + B(f)n + C(f)]. (21)

After straighforward calculations (see the Appendix), the solution is

lal =

1 1
)= — exp| — = cothf (> +C
o (.1’ £) Jainht p[ > (n“+Cy)

1
tsinhf sinhf Can +

¢?mn+04- 22)

Because the density matrix is a symmetrical function in the pair of variables
n andn’ and that, at the harmonic limia.(— 0), this density matrix must tend
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to the corresponding density matrix of the usual HO, the integration con€lants
andCy must be particularized to the following values:

I e az
Cr=1 C—f|q|n+|(m ) (23)

Therefore, the final expression of theO(1)-density matrix, in terms of the
variablen, is

1 Aaz

/. _ 1 1 1 2 12
(n,n's B) = N a_n/W@ eXp{_EW[(n + 1)
cost /B2 - 211+ 522 {20+ 1) (24)

The harmonic limit leads to the following expression for the density matrix
of the usual harmonic oscillator HO (Feynman, 1972):

llipﬂO om0’ B) = Ali[)nom(n, n';B) = pi(§. &5 B)

_ 1 a 1
N «/E\%ail,/sinMA/alaz (3)

x exp{ ————[(§2+ &%) costB/aa —Zéé]}

2 smh& VEYED

Like the density matrix of the usual HO, the density matrix for Hh&()
evidently satisfies the bounded condition (15)

1 1 ,
ﬁ'gg Opx(nﬁ ﬂ)" b x mex[ %(5 5)}=5(E—E)-
(26)
Here we have used the “gaussian” representation of the Bidastribution
N tim L expl = L — gy
36 = &) = m > exgf - T - €], @)

Using Table I, we can easily come back on the density matrix expressions for
the position{x} and momentunip}-representations.

3. QUANTUM-STATISTICAL OR THERMAL AVERAGES

For calculating the quantum-statistical or thermal averages for an operator
A(€), which characterize the quantum-statistical system, that is, for calculating the
average values in the mixed state described by the corresponding density matrix, it
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is necessary to normalize the density matriks, &’; 8). The trace of the density
matrix is the partition functiorz, (8):

+00
[ Pl £ B) de = Z,(B). (28)

[e¢]

The partition functior¥, (8) is very important because the quantum-statistical
averages of all physical observables of the system are expressed by using this
function. In addition, as we will see, the calculation of the entropy reduces to the
problem of finding the explicit form of the density matrix.

The integrals in Eq. (28) and in the following Equations are of the “gaussian”
kind (Gradshteyn and Ryzhik, 1980):

+o00 n 2
/_OO xNe E+sx gy — \/%% exp<%), (29)

After straighforward calculations, the partition functi@n(g) is given as

2
2,5) = 20(9) exp( lal? cotn? iz ). (30
with the harmonic limit:

. O 1
lim Z,(8) = Z°(p) =

2 sintf /aa;

Therefore, the quantum-statistical average of the opeistormust be cal-
culated in the following manner:

(1)

1 +oo A /.
W= 5o / AEIE S Bl g, (32)

where the following successive operations must be performed: (1) The oparator
acts on the density functign) (&, £’; B), acting only on the primed variables, that
is, &’; (2) the prime is deleted; (3) the integration is performed over the variables
without the prime.

When the operatoA has a multiplicative character, diagonal elements of the
density matrix will appear directly in the last formula.

So, thenth order moments of the variabke are defined as the quantum-
statistical averages of theh power of the variablé:

l +o00
" == "pi(§. ;) d
(& Zx(ﬂ)/_wsm@w)s

(\‘/Zii)mg(—l)“-k(ﬂ)(%m)n_k Wy, @)

where, for simplicity reasons, we have introduced kherder moment of the



Density Matrix for BDS-Hamiltonian 867

variablen:

") =

+ook
,m; B)d
Zx(ﬁ)/_oo n"px(n, n; B) dn

1

_ & 1
~ V2r Va1 /sinB. /ara; Z:.(B)
X /+Oo < exp(— tanh’;/alazn2 + sn> dy. (34)

oo

Here, we have used the notation

A
s= 27§|q|. (35)

After straighforward calculations, we obtain
gk

2
oy = fexp(——|q| coth—a/alaz>W exp(sZ cothga/alaz). (36)

The most important are the first two moments of the variable

f lq] coth—«/alaz, (37)

1 22
0% =4 G2 cothé«/alaz + =lql? cotr?é./alaz (38)
a\2 2 2 2
and, respectively, in the variabde

J

()= % f

(o] <C0thg\/ala2 - 1), (39)

(£%) = a)| 1 cothé./aa + * 1q] i cothﬁ«/aa 1 i (40)
= %)l 2 5V NG q SVa .

Because the position and momentum operators are canonical operators, char-
acterized by nonzero commutation relation (8), itis interesting to calculate, besides
thenth order moments of variablg the average of thieth order derivatives with
respect to this variable also:

an “+00 an
<3—§n>= 5 | ool E Bl

n-1
_ ap 1 +00 qn .
- ( a_l) Zk(ﬂ) /700 Bn,npx(’?» n, /3)|n’=y) d}’}, (41)
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where we mustrespectthe succesive operations as previously indicated for Eq. (32).
The averages of the first two derivatives are

)0

92 1 [a B
<@> = _5\/;1 cothE@. (43)

At this point, it is useful to observe that in the previous averages we dealt with
the double average: the quantum-mechanical and the quantum-statistical, which
cannot be separated. Consequently, it is easy to extend a series of considerations
that refer to the quantum averages to thermal averages (Popov, 1998).

For a pair of noncommuting quantum observables (Hermitian operators in the
Hilbert spaceA andB, the uncertainty principle is given in the form of Robertson’s
relation (Robertson, 1930):

1 .
(AA*(AB)? > 2((C)? +40%g), C=—i[A, B, (44)
where the variance of the observalilés
(AA? = (A%) — (A)? (45)

and similarly for the observablB.
The covariance of the observabldsaindB is defined as

1
aABZE(AB—I— BA) — (A)(B). (46)

When this covariance vanishes,g = 0, the Robertson uncertainty relation re-
duces to the Heisenberg uncertainty relation, that is, to the following uncertainty
product:

(AP(ABY = 5 (C)” (@)

An interesting historical examination of the uncertainty relations problem was
made by Majernik and Richterek (1997) (see also the references therein). Even if
in the uncertainty relations the averages can be performed for a pure or a mixed
state, Majernik and Richterek (1997) in their works preferred the pure states for
the averages.

Formerly, we have extended the uncertainty relations to the mixed states,
particularly for the thermal states, for the few exactly solvable potentials (Popov,
1999). Let us now apply these results also to the case of the BDS-Hamiltonian.

So, with the help of the above moments, the variance of the vagdblethe
thermal states of thel O(1) is

AE = /(8% — (§)% (48)
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Finally, we obtain

(Ag)? = \/Zji% Cothga/alaz; AE = /(£2)0), (49)

Itis easy to observe that this thermal variance does not depend on the param-
etera, as the eigenvalues of th&O(1). So, the variance of the O(1) is just the
square root of the 2-order moment of the usual HO.

By particularizing the expression of the thermal variance for the varigble
according to Table I, we obtain the corresponding variances for the positiod
momentump-variables:

1h 1
(ax)? = > cothg how;  (Ap)* = >mhe cothghw, (50)

so that the uncertainty product for the thermal averages is

i
2

It is evident that the uncertainty product for the thermal states is greater than
the constanh/2 and, of course, is dependent on the temperakufiarought the
variablep).

Moreover, the variance of the momentymcan be obtained by using the
averages (42) and (43):

(Ap)* = (p?) — ( >2——h2<a—2>+i <i

Pr=1p = ax2 ax

This is same as the result obtained for the usual HO by extending the usual uncer-
tainty product to the mixed states (Popov, 1999).

h h
AX Ap = > coth=hw > > (51)

1
> = Emhw cothghw. (52)

4. ENTROPIC UNCERTAINTY RELATIONS

In the past, there was a considerable interest in evaluating, in a nontraditional
manner, the various measures for uncertainty of two noncommuting observables
A andB. Because the most natural measure of uncertainty in the result of a mea-
surement is the entropy, the entropic uncertainty relations were formulated, which
are an inequality of the form (Majernik and Opatri996; Yarezet al,, 1994):

SA 4+ B > Sy, (53)

whereS,g is a positive constant, which represent the lower bound of the left-hand
side.

For a certain physical pure stdie of the system, in th¢s}-representation,
the physical entropy is defined as#¥€zet al., 1994)

9 = kg / po(&) Inpy (£) d& = —ks / WL, E)2 I, de. (54)

which depend, of course, on the quantum number
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We extend this definition to the mixed states, particularly, to the thermal states
of HO()). For these kind of states, which are described by the density matrix (24),
the averages must be calculated by using Eg. (32) and so, the entropy is

$9(8) = —ke(Ino™) = —ka

—0Q

(oM ]oM6. &5 Ble—s ds. (85)

As we see, the entropy is defined as the thermal average of the logarithm of
the normalized canonical operator:

w_ 1 1
o0 = 550 = 5 g SPLAHE. (56)

which leads to the expression

1 +00
S908) = ke 0Z,(6) + kel / @AM Pl di. (57)

This integral can be calculated in much simpler way if we use the Bloch
equation (14). After straighforward calculations, the left-hand side of this equation
leads to:

3 )
_a_PA(E,E’: Ble=s = —varaa—p.(n, n'; F)ly=y
B of
(58)

1 1
= —J/ajay| cothf + —— 1
2 costts

By replacing the integrand of Eq. (57) by the above expression, we obtain

9(8) = kg InZ ke hf ;ﬁz.
S¥(8) = ke InZ;(B) + 32\/a1a2<cot +cosﬁ§@ a2<n> (59)

Using the expression (38) of the second moment of varighled performing
some simple trigonometrical transformations, we obtain the final expression for
the entropy of the thermal states:

gé)(ﬁ) = kB(g‘/alaz cothga/alaz —1In2 Sihh’%@)

2>m(n, n; f).

)\’2
+ kB?|q| (coth—«/a1a2+ —Ja1 (60)

snh”@)'

At the harmonic limit { — 0), this entropy leads to the corresponding ex-
pression of the harmonic oscillator (Feynman, 1972):

lim s¥(g) = kB<§4/a1a2 cothga/alaz —In2 sinhga/alaz) = S9(B). (61)
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According to Table I, the parametgrhas the same value, that jg)% = 1,
for both the representatiorig} and{p}. We thus obtain that the entropies of the
thermal states are equal for both variabteend p, that is, are independent on the
representation

9(8) = $P(8) = ke[ 8" coths"” — In2 sinhg "
$(5) = $7(5) = ko 7y cotrp 'y’ n2 sinfp

A2 hw ho 1
+ kg—= | coth8— + — . 62
Bz( ¥ ﬂzmn&%) (©2)
So, the searched sum of the entropies of two noncommuting observables,
positionx and momentunp, for the HO(}) is

hw hw 1
X) P gy — 2g0) 2
+ =259(8) + ker?| cothf— + ————+—]. (63
$(8) + S7(8) = 25°(p) B< = ﬁZSmm%) (63)
Because the parametgris positive for a certain temperatufg that is, for
a certaing, the lower bound of this sum for tHéO(1) is just the double of the
entropy of the usualO, so that

sP(8) + SP(B) = 25°(p). (64)

As expected, the right-hand side of this expression depends on the temperature
T through the variablg.

Moreover, we recall that the absolute lower bound of this expression must be
searched foll — 0 (or for 8 — o0):

ﬂILmOO S9B) =0, (65)

that is, this result is in accordance with the Nernst theorem (the third law of
thermodynamics).

5. CONCLUSIONS

Itis well known that the usual or traditional uncertainty relations are available
not only for pure states in which the system was prepared, but also for mixed states,
that is, for the superposition of pure states. But in most of the papers relating to
uncertainty relations the attention is directed to pure states.

On the other hand, in the past years, the most natural measure of the uncer-
tainty in the result of a measurement (or preparation) of a single observable is
considered to be the entropy, motivating the so-called entropic uncertainty rela-
tions (Beckers and Debergh, 1989; Majernik and Richterek, 1997; Popov, 1999;
Yafnezet al, 1994) also formulated only for the pure states.
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Inthe present paper, we have extended both kind of uncertainty relations to the
mixed states, particularly to the thermal states. As a quantum-mechanical model,
we considered a quantum ideal gas of the harmonic oscillators with the BDS-
Hamiltonian, depending on a real parametein thermodynamical equilibrium
with the reservoir at the temperatufe that is, in the conditions of the quantum-
canonical distributions. Due to the symmetry in the structure of this Hamiltonian,
we have constructed the corresponding density matrix in a common way, in both
representations, the positi¢n} and momentunip}.

For the mixed states, both the uncertainty product and the entropic uncertainty
relation for these two canonical variables have a lower bound, which is dependent
on the temperatur@. This fact was expected, because, for the pure states, the
lower bound was a constant. For the case ofHlg)), the lower bound for the
mixed states (foh = 0) is just the lower bound, which corresponds to the usual
harmonic one-dimensional oscillator. The entropies calculated for two canonical
observableg andp are equal, but the absolutely lower bound is, of course, equal to
zero in accordance with the Nernst theorem. We can say that the)isGperior,
from the entropy value, confronted by the ushH&.

From this point of view, that is, from the point of view of the right-hand side
value of entropic uncertainty relations, these relations can be considered as a good
criterion for the anharmonic oscillators classification.

6. APPENDIX

In order to solve Eqg. (19), we impose that solution (21) must satisfy this
equation and we check the expressions of the functigffy, B(f), andC(f).
We obtain the following equation:

1 1 A
An?—Bn—C = A—2A%2%+2ABy — =B?+ Zn?+ —|q|B
n n n°+ -3 +2n +ﬁIQI

A A2
——=2|q|An — Z|q|2, (66)

V2

where primes indicate derivatives of the corresponding functions with respect to
the variablef .

By identifiyng the coefficients of the powers of the variadp|eve obtain three
new equations:

1

A = 5= 2A2, (67)
LA

B’ = ——2|q|A — 2AB, (68)

V2
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1 N 22
C'=ZB?- —=[q|B— A+ =Iq/% 69
5 ﬁlql + 1l (69)
By integrating the first equation (67) and puttifig= O, we obtain
1
A= > cothf. (70)
The second equation (68) can be written as follows:
dB A
ar + cothf B = 7§|q| cothf, (72)

and its solution can be determined (see, e.g., Piskounov, 1972) by using the fol-
lowing notations:

P(f) = cothf; u(f):exp/ P(f)df; Q(f) = %|q| cothf, (72)

()
So, the functiorB( f) becomes

B(f) = — [fQ(f)M(f)dijCl}. (73)

B(f) = 12|q|+c (74)

L
/2 'sinhf”
By subsituting the expressions f8( f) andB( f) in the third equation (69),
we obtain an ordinary differential equation for the functiogf ):

1 1
C(f)=Co— ECf cothf — > In sinhf. (75)
Finally, the expression for the density matrix is
3 1 5 o 1 A
p= = exp[Co > cothf (n* + C{) + Snne Cin+ ﬁIQIn]. (76)
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